skip to main content


Search for: All records

Creators/Authors contains: "Choi, Minsoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 5, 2024
  2. This study examined how well people can recognize and relate to animated pedagogical agents of varying ethnicities/races and genders. For both Study 1 (realistic-style agents) and Study 2 (cartoon-style agents), participants viewed brief video clips of virtual agents of varying racial/ethnic categories and gender types and then identified their race/ethnicity and gender and rated how human-like and likable the agent appeared. Participants were highly accurate in identifying Black and White agents but were less accurate for Asian, Indian, and Hispanic agents. Participants were accurate in recognizing gender differences. Participants rated all types of agents as moderately human-like, except for White agents. Likability ratings were lowest for White and male agents. The same pattern of results was obtained across two independent studies with different participants and different onscreen agents, which indicates that the results are not solely due to one specific set of agents. Consistent with the Media Equation Hypothesis and the Alliance Hypothesis, this work shows that people are sensitive to the race/ethnicity and gender of onscreen agents and relate to them differently. These findings have implications for how to design animated pedagogical agents for improved multimedia learning environments in the future and serve as a crucial first step in highlighting the possibility and feasibility of incorporating diverse onscreen virtual agents into educational computer software.

     
    more » « less
  3. Abstract

    Access to accurate, generalizable and scalable solar irradiance prediction is critical for smooth solar-grid integration, especially in the light of the accelerated global adoption of solar energy production. Both physical and statistical prediction models of solar irradiance have been proposed in the literature. Physical models require meteorological forecasts—generated by computationally expensive models—to predict solar irradiance, with limited accuracy in sub-daily predictions. Statistical models leveragein-situmeasurements which require expensive equipment and do not account for meso-scale atmospheric dynamics. We address these fundamental gaps by developing a convolutional global horizontal irradiance prediction model, using convolutional neural networks and publicly accessible satellite cloud images. Our proposed model predicts solar irradiance in 12 different locations in the US for various prediction time horizons. Our model yields up to 24% improvement in an hour-ahead predictions and 26% in a day-ahead predictions compared to a persistence forecast. Moreover, using saliency maps and target-location-focused cropping, we demonstrate the benefits of incorporating meso-scale atmospheric dynamics for prediction performance. Our results are critical for energy systems planners, utility managers and electricity market participants to ensure efficient harvesting of the solar energy and reliable operation of the grid.

     
    more » « less